Self-Force Corrections to the Periapsis Advance around a Spinning Black Hole.

نویسنده

  • Maarten van de Meent
چکیده

The linear in mass ratio correction to the periapsis advance of equatorial nearly circular orbits around a spinning black hole is calculated for the first time and to a very high precision, providing a key benchmark for different approaches modeling spinning binaries. The high precision of the calculation is leveraged to discriminate between two recent incompatible derivations of the 4 post-Newtonian equations of motion. Finally, the limit of the periapsis advance near the innermost stable orbit (ISCO) allows the determination of the ISCO shift, validating previous calculations using the first law of binary mechanics. Calculation of the ISCO shift is further extended into the near-extremal regime (with spins up to 1-a=10^{-20}), revealing new unexpected phenomenology. In particular, we find that the shift of the ISCO does not have a well-defined extremal limit but instead continues to oscillate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gravitational self-force on eccentric equatorial orbits around a Kerr black hole

This paper presents the first calculation of the gravitational self-force on a small compact object on an eccentric equatorial orbit around a Kerr black hole to first order in the mass-ratio. That is the pointwise correction to the object’s equations of motion (both conservative and dissipative) due to its own gravitational field, which is treated as a linear perturbation to the background Kerr...

متن کامل

The phase transition of corrected black hole with f(R) gravity

In this letter, we consider static black hole in f(R) gravity.We take advantage from corrected entropy and temperature and investigate such black hole. Finally, we study the $ P - V $ critically and phase transition of corrected black hole with respect to entropy and temperature. Here also, we obtain the heat capacity for the static black hole in $ f(R) $ gravity. This calculation help us...

متن کامل

Conservative corrections to the innermost stable circular orbit (ISCO) of a Kerr black hole: A new gauge-invariant post-Newtonian ISCO condition, and the ISCO shift due to test-particle spin and the gravitational self-force

The innermost stable circular orbit (ISCO) delimits the transition from circular orbits to those that plunge into a black hole. In the test-mass limit, well-defined ISCO conditions exist for the Kerr and Schwarzschild spacetimes. In the finite-mass case, there are a large variety of ways to define an ISCO in a post-Newtonian (PN) context. Here I generalize the gauge-invariant ISCO condition of ...

متن کامل

R Corrections for 5D Black Holes and Rings

We study higher-order corrections to two BPS solutions of 5D supergravity, namely the supersymmetric black ring and the spinning black hole. Due in part to our current relatively limited understanding of F-type terms in 5D supergravity, the nature of these corrections is less clear than that of their 4D cousins. Effects of certain R2 terms found in Calabi-Yau compactification of M-theory are sp...

متن کامل

Towards the solution of the relativistic gravitational radiation reaction problem for binary black holes

Here we present the results of applying the generalized Riemann ζ -function regularization method to the gravitational radiation reaction problem. We analyse in detail the head-on collision of two non-spinning black holes with an extreme mass ratio. The resulting reaction force on the smaller hole is repulsive. We discuss the possible extensions of these method to generic orbits and spinning bl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 118 1  شماره 

صفحات  -

تاریخ انتشار 2017